GPU-SAM: Leveraging multi-GPU split-and-merge execution for system-wide real-time support
نویسندگان
چکیده
Multi-GPUs appear as an attractive platform to speed up data-parallel GPGPU computation. The idea of split-and-merge execution has been introduced to accelerate the parallelism of multiple GPUs even further. However, it has not been explored before how to exploit such an idea for real-time multi-GPU systems properly. This paper presents an open-source real-time multi-GPU scheduling framework, called GPU-SAM , that transparently splits each GPGPU application into smaller computation units and executes them in parallel across multiple GPUs, aiming to satisfy real-time constraints. Multi-GPU split-and-merge execution offers the potential for reducing an overall execution time but at the same time brings various different influences on the schedulability of individual applications. Thereby, we analyze the benefit and cost of split-and-merge execution on multiple GPUs and derive schedulability analysis capturing seemingly conflicting influences. We also propose a GPU parallelism assignment policy that determines the multi-GPU mode of each application from the perspective of system-wide schedulability. Our experiment results show that GPU-SAM is able to improve schedulability in real-time multi-GPU systems by relaxing the restriction of launching a kernel on a single GPU only and choosing better multi-GPU execution
منابع مشابه
Implementation of the direction of arrival estimation algorithms by means of GPU-parallel processing in the Kuda environment (Research Article)
Direction-of-arrival (DOA) estimation of audio signals is critical in different areas, including electronic war, sonar, etc. The beamforming methods like Minimum Variance Distortionless Response (MVDR), Delay-and-Sum (DAS), and subspace-based Multiple Signal Classification (MUSIC) are the most known DOA estimation techniques. The mentioned methods have high computational complexity. Hence using...
متن کاملAccelerating high-order WENO schemes using two heterogeneous GPUs
A double-GPU code is developed to accelerate WENO schemes. The test problem is a compressible viscous flow. The convective terms are discretized using third- to ninth-order WENO schemes and the viscous terms are discretized by the standard fourth-order central scheme. The code written in CUDA programming language is developed by modifying a single-GPU code. The OpenMP library is used for parall...
متن کاملAn approach to Improve Particle Swarm Optimization Algorithm Using CUDA
The time consumption in solving computationally heavy problems has always been a concern for computer programmers. Due to simplicity of its implementation, the PSO (Particle Swarm Optimization) is a suitable meta-heuristic algorithm for solving computationally heavy problems. However, despite the simplicity, the algorithm is inefficient for solving real computationally heavy problems but the pr...
متن کاملTimeGraph: GPU Scheduling for Real-Time Multi-Tasking Environments
The Graphics Processing Unit (GPU) is now commonly used for graphics and data-parallel computing. As more and more applications tend to accelerate on the GPU in multi-tasking environments where multiple tasks access the GPU concurrently, operating systems must provide prioritization and isolation capabilities in GPU resource management, particularly in real-time setups. We present TimeGraph, a ...
متن کاملBatch Method for Efficient Resource Sharing in Real-Time Multi-GPU Systems
The performance of many GPU-based systems depends heavily on the effective bandwidth for transferring data between the processors. For realtime systems, the importance of data transfer rates may be even higher due to non-deterministic transfer times that limit the ability to satisfy response time requirements. We present a new method that allows real-time applications to make efficient use of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Systems and Software
دوره 117 شماره
صفحات -
تاریخ انتشار 2016